馬宗義 中國科學院(yuan)金屬研究所研究員,博(bo)士生(sheng)導師,材料制(zhi)備與加(jia)工研究部主任。1985 年畢業于燕山(shan)大學機械系獲學士(shi)學位,1988 年(nian)畢業于(yu)哈爾濱工業大學(xue)金屬材料及工藝系獲碩士學(xue)位(wei),2000年畢(bi)業于香港城市大學(xue)物理及(ji)材料科(ke)學(xue)系獲博士(shi)學(xue)位。1995-1996年和2001-2004 年分(fen)別在香港和美國做訪(fang)問學(xue)者和博士后。2004 年(nian)6 月(yue)回國(guo)(guo)工作。為中國(guo)(guo)科學院(yuan)人才計劃(hua)入選者,國(guo)(guo)家杰出青年基金(jin)獲得(de)者,中國(guo)(guo)科學院(yuan)特(te)聘研究(jiu)員(yuan),享(xiang)受政府特(te)殊(shu)津貼。兼任(ren)中國(guo)(guo)有色(se)金(jin)屬學會(hui)(hui)復合材料專業(ye)委員(yuan)會(hui)(hui)主任(ren),中國(guo)(guo)復合材料學會(hui)(hui)金(jin)屬基復合材料分會(hui)(hui)副主任(ren),粉末冶金(jin)產業(ye)技術創新(xin)戰略聯(lian)盟理事,Materials Science and Engineering A、Science and Technology of Welding and Joining等8個(ge)國(guo)際期(qi)刊及《中國(guo)科學(xue)(xue)(xue):技術科學(xue)(xue)(xue)》、《金屬學(xue)(xue)(xue)報(bao)》、《復合材(cai)料學(xue)(xue)(xue)報(bao)》等國(guo)內期(qi)刊編委。
主要從事金屬基復(fu)合材料、攪拌摩擦(ca)焊(han)的研究工作(zuo),在(zai)Acta Materialia、Carbon等期刊(kan)上發表SCI論文360多篇,多次應(ying)邀為Materials Science and Engineering - Reports、Scripta Materialia等期刊撰(zhuan)寫綜(zong)述論(lun)文,出(chu)版英文專著1部(bu)。兩(liang)篇論文(wen)獲評“2007年中國(guo)百篇最具影響國(guo)際學(xue)術(shu)論文(wen)”和(he)“2004-2008年(nian)工程技術領域研究論文中引用數最多(duo)的中國學者論文”。發(fa)表論文SCI他引14000余(yu)次,H因子54。2015-2019年連(lian)續入選Elsevier發布的“中國高被引(yin)學者榜單”。獲授(shou)權國家發明(ming)專利40項(xiang),發布(bu)企業標準(zhun)項(xiang),所開發的(de)復(fu)合(he)材料產(chan)品(pin)與焊(han)接工藝廣(guang)泛應用于我(wo)國航天(tian)、國防、核電、高(gao)鐵等(deng)領域。獲遼(liao)寧(ning)省自(zi)然科學(xue)一(yi)等(deng)獎、中國顆粒學(xue)會(hui)科技(ji)進步一(yi)等(deng)獎,入選“2018中國(guo)科學年度新聞(wen)人物”。
代表性論著:
(1)Zongyi Ma, Rajiv S. Mishra, Friction stir superplasticity for unitized structures, Elsevier, 225 Wyman Street, Waltham, MA 02451, USA, May 2014.
(2)Y.N. Zan,Y.T. Zhou, H. Zhao, Z.Y. Liu, Q.Z. Wang*, D. Wang, W.G. Wang, B.L. Xiao, Z.Y. Ma*, Enhancing high-temperature strength of (B4C+Al2O3)/Al designed for neutron absorbing materials by constructing lamellar structure, Composites B, 183 (2020) 107674.
(3)L.H. Wu, X.B. Hu, X.X. Zhang, Y.Z. Li, Z.Y. Ma*, X.L. Ma, B.L. Xiao*, Fabrication of high-quality Ti joint with ultrafine grains using submerged friction stirring technology and its microstructural evolution mechanism, Acta Mater., 166, 3 (2019) 371-385.
(4)Z.W. Zhang, Z.Y. Liu, B.L. Xiao, D.R. Ni, Z.Y. Ma*, High efficiency dispersal and strengthening of graphene reinforced aluminum alloy composites fabricated by powder metallurgy combined with friction stir processing, Carbon, 135 (2018) 215-223.
(5)X.X. Zhang, D.R. Ni, B.L. Xiao, H. Andr?, W.M. Gan, M. Hofmann, Z.Y. Ma*, Determination of macroscopic and microscopic residual stresses in friction stir welded metal matrix composites via neutron diffraction, Acta Mater., 87 (2015) 161-173.
(6)Z. Zhang, B.L. Xiao, Z.Y. Ma*, Hardness recovery mechanism in heat-affected zone during long-term natural aging and its influence on mechanical properties and fracture behavior of friction stir welded 2024Al-T351 joints, Acta Mater., 73 (2014) 227-239.
(7)Z.Y. Liu, B.L. Xiao, W.G. Wang, Z.Y. Ma*, Analysis of carbon nanotube shortening and composite strengthening in carbon nanotube/aluminum composites fabricated by multi-pass friction stir processing, Carbon, 69 (2014) 264-274.
(8)Z.Y. Liu, B.L Xiao, W.G. Wang, Z.Y. Ma*, Singly dispersed carbon nanotubes reinforced aluminum matrix composites fabricated by powder metallurgy combined with friction stir processing, Carbon, 50, 5 (2012) 1843-1852.
(9)Z.Y. Ma*, F.C. Liu, R.S. Mishra, Superplastic deformation mechanism of an ultrafine-grained aluminum alloy produced by friction sir processing, Acta Mater., 58, 14 (2010) 4693-4704.
(10)A.H. Feng, Z.Y. Ma*, Microstructural evolution of cast Mg-Al-Zn during friction stir processing and subsequent aging, Acta Mater., 57, 14 (2009) 4248-4260.